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Abstract

The classical optimal (in the Frobenius sense) diagonal preconditioner for
large sparse linear systems Ax = b is generalized and improved. The new
proposed approximate inverse preconditioner N is based on the minimization
of the Frobenius norm of the residual matrix AM − I, where M runs over
a certain linear subspace of n × n real matrices, defined by a prescribed
sparsity pattern. The number of nonzero entries of the n×n preconditioning
matrix N is less than or equal to 2n, and n of them are selected as the
optimal positions in each of the n columns of matrix N . All theoretical results
are justified in detail. In particular, the comparison between the proposed
preconditioner N and the optimal diagonal one is theoretically analyzed.
Finally, numerical experiments reported confirm the theory and illustrate
that our generalization of the optimal diagonal preconditioner improves (in
general) its efficiency, when they do not coincide.

Keywords: Approximate inverse preconditioner, Frobenius norm
minimization, Diagonal preconditioner

1. Introduction

The discretization of many different PDEs (modeling physical problems)
by any adequate numerical method (finite differences, finite elements, finite
volumes, meshless, etc.), generally leads to a large linear system
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Ax = b, A ∈ Rn×n, x, b ∈ Rn×1 (1.1)

in which the matrix A is nonsingular and sparse.
The solution of these linear systems is usually performed by iterative

methods based on Krylov subspaces (see, e.g., [1, 2, 3, 4]). To improve the
convergence of these Krylov methods, system (1.1) can be preconditioned
with an adequate preconditioning matrix N , transforming it into any of the
equivalent problems

NAx = Nb, (1.2)

ANy = b, x = Ny, (1.3)

that is, the left and right preconditioned systems, respectively. In this paper,
we address only the case of right-sided preconditioners (1.3), but analogous
results can be obtained for the left-sided preconditioners (1.2). The study
of preconditioning strategies for large linear systems is at present one of the
most relevant research areas in Numerical Linear Algebra. In [5], we can find
a very complete survey about this question. The preconditioning of system
(1.1) is performed in order to obtain a preconditioned matrix AN as close as
possible to the identity in some sense, and the preconditioner N is called an
approximate inverse of A.

The different strategies to construct approximate inverse preconditioners
can be grouped into three categories [6]: approximate inverse methods based
on Frobenius norm minimization, factorized sparse approximate inverses (see,
e.g., [7, 8, 9] and the references therein), and preconditioning methods con-
sisting of an incomplete factorization followed by an approximate inversion
of the incomplete factors.

The idea of using Frobenius norm minimization for preconditioning pur-
poses was first described in [10], and other early works can be found in
[11, 12, 13]. Some posterior approaches in this sense can be found, for in-
stance, in [14, 15, 16, 17, 18, 19] and in the references therein.

In some cases, the Frobenius norm based preconditioners are parametrized
by prescribed sparsity patterns. Otherwise, among the Frobenius norm min-
imization preconditioners not extracted from sparse matrix subspaces, let
us mention here the preconditioners for structured matrices obtained by or-
thogonal projections onto unitary matrix algebras (like, for instance, circu-
lant preconditioners for Toeplitz matrices); see, e.g., [20, 21, 22] and the
references therein.
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In [23, 24], the search of Frobenius norm based approximate inverses with
a prescribed sparsity pattern is generalized by considering a more general
case of linear parametrization where preconditioners belong to an arbitrary
matrix subspace S of Rn×n. This procedure leads to a natural generalization
of the classical Moore-Penrose inverse, the so-called S-Moore-Penrose inverse
introduced in [25].

The closeness of the preconditioned matrix AN to the identity may be
measured by using a suitable matrix norm like, for instance, the Frobenius
norm ‖·‖F . In this way, the problem of obtaining the best preconditioner N
(with respect to the Frobenius norm) of system (1.1) in the subspace S of
Rn×n is reduced to the minimization problem

min
M∈S
‖AM − I‖F = ‖AN − I‖F (1.4)

and the solution N to problem (1.4) will be referred to as the “optimal”
preconditioner of system (1.1) over the subspace S.

It is important to highlight that, throughout this paper, the term “op-
timal” means that the approximate inverse N is the matrix that minimizes
the Frobenius norm on AN − I over a certain subspace S of Rn×n, but the
preconditioner N is not necessarily optimal in any other sense of the word.

Let us briefly describe the basic idea of this work. Our starting point is
the well-known optimal diagonal preconditioner; see, e.g., [4]. This is exactly
the solution D to problem (1.4) for the subspace of all n×n diagonal matrices,
and it is often used as a simple preconditioner for sparse linear systems.

Sometimes, the preconditioner D is efficient and it leads to fast conver-
gence. For instance, this is usually the case when matrix A is symmetric
positive definite [2]. However, in other cases, the diagonal preconditioner D
is not effective enough for convergence.

Then, we improve D in the following natural way. Since, obviously, the
diagonal matrix D has one and only one nonzero element per column, this
suggests the idea of considering the best approximate inverse (in the Frobe-
nius sense) of matrix A among all the n× n matrices that have exactly one
nonzero element per column. Call each of such nonzero elements the optimal
row position or entry for its corresponding column. Then, our proposed pre-
conditioner N will contain the n diagonal entries and those optimal entries
per column which do not coincide with the diagonal ones. Finally, N will be
exactly the solution to problem (1.4) for the subspace S ⊂ Rn×n, defined by
the above described sparsity pattern.
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Obviously, the so defined approximate inverse N of matrix A generalizes
D, and it has at least n nonzero entries (the diagonal ones), and at most 2n
nonzero entries.

Moreover, the preconditioning matrix N has another advantage, com-
pared with the classical diagonal approximate inverse D. Namely, the reiter-
ation of the preconditioning technique with the optimal diagonal approximate
inverse makes no sense. On the contrary, when using our new preconditioner
N , the well-known multistep preconditioning strategy (see, e.g., [15, 26]) not
only makes sense, but as we shall prove, each step of this reiterated precon-
ditioning strategy strictly reduces the Frobenius norm of the residual matrix,
whenever the preconditioner N obtained in the previous step is not diagonal.

We propose a simple, natural generalization of the optimal diagonal pre-
conditioner, which improves it (in the sense of Eq. (1.4)). Theoretical results
will be justified in detail and illustrated with some numerical experiments.
In addition, the proposed preconditioner is also compared with the AINV
approximate inverse preconditioner [6].

This paper has been organized as follows. In Section 2, we recall explicit
expressions for both the solution N to problem (1.4) and its correspond-
ing minimum Frobenius norm ‖AN − I‖F , valid for any matrix subspace
S ⊂ Rn×n . Next, in Section 3, we derive explicit expressions for the pro-
posed preconditioner N and for ‖AN − I‖F . Numerical experiments are pre-
sented in Section 4. Finally, Section 5 closes the paper with some concluding
remarks.

2. A preliminary lemma

Now, we present a preliminary lemma required to make this paper self-
contained.

Taking advantage of the prehilbertian character of the matrix Frobenius
norm, the solution N to problem (1.4) can be directly obtained using the
orthogonal projection theorem. Here and in the following, orthogonality is
with respect to the Frobenius inner product 〈·, ·〉F . More precisely, the matrix
product AN is the orthogonal projection of the identity onto the subspace
AS. Consequently, an explicit formula for matrix N can be obtained by
expressing the orthogonal projection AN of the identity matrix onto the
subspace AS by its expansion with respect to an orthonormal basis of AS
[23]. This is the idea of the following lemma.
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Lemma 2.1. Let A ∈ Rn×n be nonsingular. Let S be a linear subspace of
Rn×n of dimension d, and {M1, ...,Md} a basis of S such that {AM1, ..., AMd}
is an orthogonal basis of AS. Then, the solution to problem (1.4) is

N =
d∑
i=1

tr (AMi)

‖AMi‖2F
Mi, (2.1)

and the minimum Frobenius norm is

‖AN − I‖2F = n−
d∑
i=1

[tr (AMi)]
2

‖AMi‖2F
. (2.2)

Remark 2.1. If we have a basis {Mi}di=1 of subspace S such that the cor-

responding basis {AMi}di=1 of subspace AS is not orthogonal, then we only
need to use the Gram-Schmidt orthogonalization procedure to obtain an or-
thogonal basis of AS, in order to apply Lemma 2.1. This procedure has been
formalized in [23], obtaining several explicit expressions for both the optimal
preconditioner N defined by (1.4) and ‖AN − I‖F , that have been applied
to the sparse preconditioning of large linear systems arising from real-world
cases.

For different spectral properties of matrix AN , and for the theoretical
effectiveness analysis of the optimal approximate inverse preconditioners N
defined by Eq. (1.4), we refer the reader to [24, 25].

3. The proposed approximate inverse preconditioner

In this section, the proposed preconditioner N of system (1.1) is intro-
duced. First, we need to give a definition and to set some notations.

Comparing two different approximate inverses for the same matrix A, as
stated by the following definition, is an essential point for preconditioning
purposes.

Definition 3.1. Let A,N,N ′ ∈ Rn×n and suppose that A is nonsingular.
Then, we say that N is better approximate inverse of A than N ′, or that N
improves N ′ as approximate inverse of A if and only if

‖AN − I‖F < ‖AN
′ − I‖F .
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Throughout this paper, the subspace of all n × n diagonal matrices is
denoted by Dn. From now on, Mi,j denotes the n × n matrix whose only
nonzero term is mij = 1, ei denotes the ith column of the identity matrix
(i.e., Aei is the ith column of A), and the symbols ‖·‖2 and 〈·, ·〉2 stand for
the usual Euclidean vector norm and inner product, respectively.

Remark 3.1. Note that since Mi,j = eie
T
j , then the only non-null column

of matrix AMi,j is its jth one, which coincides with the ith column Aei of
matrix A. Consequently, we have

tr (AMi,j) = tr
(
Aeie

T
j

)
= aji, ‖AMi,j‖2F =

∥∥AeieTj ∥∥2F = ‖Aei‖22 . (3.1)

Moreover,

〈AMi,j, AMi′,j〉F =
〈
Aeie

T
j , Aei′e

T
j

〉
F

= 〈Aei, Aei′〉2 , (3.2)

〈AMi,j, AMi′,j′〉F =
〈
Aeie

T
j , Aei′e

T
j′

〉
F

= 0 for all j 6= j′, (3.3)

so that any system of matrices {AMi,j}nj=1 is orthogonal with respect to the
Frobenius inner product.

When all diagonal entries of matrix A are not null, the preconditioner

diag
(
a−111 , a

−1
22 , . . . , a

−1
nn

)
is often used as an approximate inverse preconditioner of system (1.1); see,
e.g., [2]. However, in general, this is not the optimal choice (in the sense
of Eq. (1.4)) among the diagonal approximate inverses. Indeed, as it is
well-known, the best diagonal preconditioner D of system (1.1), that is, the
solution to problem (1.4) for the subspace Dn is given by (see, e.g., [27])

D =
n∑
j=1

ajj

‖Aej‖22
Mjj = diag

(
a11

‖Ae1‖22
, · · · , ann

‖Aen‖22

)
, (3.4)

while the corresponding minimum Frobenius norm is given by

∥∥AD − I∥∥2
F

= n−
n∑
j=1

a2jj

‖Aej‖22
. (3.5)

Obviously, the optimal diagonal approximate inverse (3.4) of matrix A,
has exactly one nonzero element per column. As mentioned in Section 1,
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this suggests the idea of considering the best approximate inverse of matrix
A among all the n × n matrices that have exactly one nonzero element per
column, the so-called optimal row position or entry per column. Suppose
that the n nonzero optimal entries are placed at positions

(i1, 1) , (i2, 2) , . . . , (in, n) ,

i.e., for each column j = 1, 2, . . . , n, the optimal entry for preconditioning
the linear system (1.1), by using Eq. (1.4), is placed at the ijth row.

Then, our new preconditioner N is defined as follows.
(i) If ij = j, the best entry in the jth column is the diagonal one. We select
this entry, and no other entries are added to (j, j) in column j.
(ii) If ij 6= j, the best entry in the jth column is not the diagonal one. We
select the diagonal entry (j, j) and, besides, the optimal entry (ij, j) is added
to column j.
(iii) Finally, our preconditioner N is defined as the solution to problem (1.4)
for the subspace S of Rn×n whose only nonzero entries are the ones defined
by steps (i) and (ii), i.e.,

S = Sn := span
(
{Mj,j}nj=1 ∪

{
Mij ,j | ij 6= j

}n
j=1

)
.

In this way, the number of nonzero entries of each column j = 1, 2, . . . , n
of matrix N is either 1 (if ij = j) or 2 (if ij 6= j). Hence, the total number
of nonzero entries of the n×n preconditioning matrix N is at least n and at
most 2n.

For instance, let n = 4 and suppose that for a certain coefficient matrix
A ∈ R4×4, the optimal positions per column are

(i1, 1) = (1, 1) , (i2, 2) = (4, 2) , (i3, 3) = (3, 3) , (i4, 4) = (1, 4) .

Then, the sparsity patterns of the preconditioning matrices D and N will be

D =


n11 0 0 0
0 n22 0 0
0 0 n33 0
0 0 0 n44

 , N =


n11 0 0 n14

0 n22 0 0
0 0 n33 0
0 n42 0 n44

 ,

where n42 and n14 are the new (optimal) entries in N , not appearing in D.
Hence

S4 = span {M1,1,M2,2,M3,3,M4,4,M4,2,M1,4} .
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Remark 3.2. Note that the preconditioning matrix N generalizes the op-
timal diagonal approximate inverse D. Indeed, in the special case that the
optimal entry for each column j = 1, 2, . . . , n is the diagonal one, we have

ij = j for all j = 1, 2, . . . , n ⇒ N = D.

Moreover, the preconditioner N improves, in general, the optimal diagonal
preconditioner D. Indeed, since D and N are the solutions to problem (1.4)
for the subspaces

Dn = span {Mj,j}nj=1 and Sn = span
(
{Mj,j}nj=1 ∪

{
Mij ,j | ij 6= j

}n
j=1

)
,

respectively, then we have

Sn ⊇ Dn ⇒ ‖AN − I‖F ≤
∥∥AD − I∥∥

F
.

The following is the main result of this paper. It provides us with explicit
expressions for both matrixN and the minimum Frobenius norm ‖AN − I‖F .

Theorem 3.1. Let A ∈ Rn×n be nonsingular. Let N be the solution to
problem (1.4) for the subspace

Sn = span
(
{Mj,j}nj=1 ∪

{
Mij ,j | ij 6= j

}n
j=1

)
. (3.6)

Then, for each j = 1, 2, . . . , n, its corresponding index ij is defined by the
condition ∣∣ajij ∣∣∥∥Aeij∥∥2 = max

{
|aj1|
‖Ae1‖2

,
|aj2|
‖Ae2‖2

, · · · , |ajn|
‖Aen‖2

}
. (3.7)

Moreover,

N =
n∑

j = 1
ij = j

ajj

‖Aej‖22
Mj,j +

n∑
j = 1
ij 6= j

ajj
∥∥Aeij∥∥22 − ajij 〈Aej, Aeij〉2

‖Aej‖22
∥∥Aeij∥∥22 − 〈Aej, Aeij〉22Mj,j

+
n∑

j = 1
ij 6= j

ajij ‖Aej‖
2
2 − ajj

〈
Aej, Aeij

〉
2

‖Aej‖22
∥∥Aeij∥∥22 − 〈Aej, Aeij〉22Mij ,j (3.8)
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and the corresponding minimum Frobenius norm is given by

‖AN − I‖2F = n−
n∑
j=1

a2jj

‖Aej‖22

−
n∑

j = 1
ij 6= j

[
ajij ‖Aej‖

2
2 − ajj

〈
Aej, Aeij

〉
2

]2
‖Aej‖22

(
‖Aej‖22

∥∥Aeij∥∥22 − 〈Aej, Aeij〉22) . (3.9)

Proof. First, we determine the (optimal) positions {(ij, j)}nj=1 of the nonzero
entries in the best approximate inverse of matrix A among all n×n matrices
that have exactly one nonzero element per column.

Let j ∈ {1, 2, . . . , n} be arbitrary, but fixed. The optimal approximate
inverse Ni,j, among all the n×n matrices whose only nonzero term is placed
at the ith row, jth column, can be obtained as the solution to problem (1.4)
for the one-dimensional subspace S = span {Mi,j}. That is, using Eqs. (2.1)
and (3.1), we obtain

Ni,j =
tr (AMi,j)

‖AMi,j‖2F
Mi,j =

aji

‖Aei‖22
Mi,j,

for which, using Eqs. (2.2) and (3.1), we have

‖ANi,j − I‖2F = n− [tr (AMi,j)]
2

‖AMi,j‖2F
= n−

a2ji

‖Aei‖22
.

Consequently, the index i ∈ {1, 2, . . . , n} that minimizes ‖ANi,j − I‖2F for

each fixed column j, is the one that maximizes the quotient
a2ji

‖Aei‖22
, that is,

the index ij, defined by Eq. (3.7).
Now, consider the set

T = {j ∈ {1, 2, . . . , n} | ij 6= j } .

There are two possible cases.
Case 1. If ij = j for all j = 1, 2, . . . , n then T = ∅. In this case,

Sn = span
(
{Mj,j}nj=1 ∪

{
Mij ,j | ij 6= j

}n
j=1

)
= span {Mj,j}nj=1 = Dn.
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Hence, dim (Sn) = dim (Dn) = n and, according to Remark 3.1, the basis
{AMj,j}nj=1 of subspace ASn is orthogonal. Lemma 2.1 can be applied. Using
Eqs. (2.1), (2.2) and (3.1), we obtain

N =
n∑
j=1

tr (AMj,j)

‖AMj,j‖2F
Mj,j =

n∑
j=1

ajj

‖Aej‖22
Mj,j, (3.10)

‖AN − I‖2F = n−
n∑
j=1

[tr (AMj,j)]
2

‖AMj,j‖2F
= n−

n∑
j=1

a2jj

‖Aej‖22
. (3.11)

But, since T = ∅, the two right-most sums in Eq. (3.8) and the right-most
sum in Eq. (3.9) vanish, so that these two expressions exactly coincide with
those given by Eqs. (3.10) and (3.11), respectively. This proves the theorem
in case 1.

Case 2. If ij 6= j for some j = 1, 2, . . . , n then T 6= ∅. In this case,
1 ≤ |T | ≤ n and

Sn = span
(
{Mj,j}nj=1 ∪

{
Mij ,j |ij 6= j

}n
j=1

)
= span

(
{Mj,j}nj=1 ∪

{
Mij ,j

}
j∈T

)
.

Hence, dim (Sn) = n+ |T | and

B = {AMj,j}nj=1 ∪
{
AMij ,j

}
j∈T

is a basis of subspace ASn.
Now, note that, according to Eq. (3.2), for every j ∈ T we have〈

AMj,j, AMij ,j

〉
F

=
〈
Aej, Aeij

〉
2

so that the basis B of ASn is not necessarily orthogonal. Then, to apply
Lemma 2.1, it suffices to use the Gram-Schmidt procedure (see Remark 2.1).
In this way, after applying Gram-Schmidt to the basis B of ASn, we obtain
the following orthogonal basis B̃ of subspace ASn from B

B̃ = {AUj}nj=1 ∪ {AVj}j∈T = {AMj,j}nj=1 ∪
{
AMij ,j − βjAMj,j

}
j∈T ,

where, for simplicity, we denote

Uj = Mj,j for all j = 1, 2, . . . , n, Vj = Mij ,j − βjMj,j for all j ∈ T
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and

βj =

〈
Aej, Aeij

〉
2

‖Aej‖22
for all j ∈ T. (3.12)

Hence, in order to apply Lemma 2.1 for the orthogonal basis B̃ of ASn,
we only need to compute the traces and Frobenius norms of matrices AUj
and AVj; see Eq. (2.1). On one hand, for all j = 1, 2, . . . , n using Eq. (3.1),
we immediately obtain

tr (AUj) = tr (AMj,j) = ajj,

‖AUj‖2F = ‖AMj,j‖2F = ‖Aej‖22
(3.13)

and, on the other hand, for all j ∈ T using Eqs. (3.1), (3.2) and (3.12), we
immediately obtain

tr (AVj) = tr
(
AMij ,j − βjAMj,j

)
= ajij − βjajj,

‖AVj‖2F =
〈
AMij ,j − βjAMj,j, AMij ,j − βjAMj,j

〉
F

=
∥∥Aeij∥∥22 − β2

j ‖Aej‖
2
2 .

(3.14)

Now, using Eq. (2.1) in Lemma 2.1 and Eqs. (3.13) and (3.14), we obtain
the following first expression for matrix N (based on Gram-Schmidt)

N =
n∑
j=1

tr (AUj)

‖AUj‖2F
Uj +

∑
j∈T

tr (AVj)

‖AVj‖2F
Vj

=
n∑
j=1

ajj

‖Aej‖22
Mj,j +

∑
j∈T

ajij − βjajj∥∥Aeij∥∥22 − β2
j ‖Aej‖

2
2

(
Mij ,j − βjMj,j

)
.

Then, we split the above expression for N into three sums corresponding
to linear combinations of the matrices: Mj,j with j /∈ T (i.e., ij = j); Mj,j

with j ∈ T (i.e., ij 6= j); and Mij ,j with j ∈ T (i.e., ij 6= j). Then, we replace
βj with its value given in Eq. (3.12). In this way, we obtain the following
final expression for matrix N

N =
∑
j /∈T

ajj

‖Aej‖22
Mj,j +

∑
j∈T

(
ajj

‖Aej‖22
−

βj
(
ajij − βjajj

)∥∥Aeij∥∥22 − β2
j ‖Aej‖

2
2

)
Mj,j

+
∑
j∈T

ajij − βjajj∥∥Aeij∥∥22 − β2
j ‖Aej‖

2
2

Mij ,j
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=
n∑

j = 1
ij = j

ajj

‖Aej‖22
Mj,j +

n∑
j = 1
ij 6= j

ajj
∥∥Aeij∥∥22 − ajij 〈Aej, Aeij〉2

‖Aej‖22
∥∥Aeij∥∥22 − 〈Aej, Aeij〉22Mj,j

+
n∑

j = 1
ij 6= j

ajij ‖Aej‖
2
2 − ajj

〈
Aej, Aeij

〉
2

‖Aej‖22
∥∥Aeij∥∥22 − 〈Aej, Aeij〉22Mij ,j.

where the two right-most sums in the above expression contain the entries
of the preconditioner N where it differs from the optimal diagonal precon-
ditioner D, while its left-most sum contains the diagonal entries (j, j) of N
(such that ij = j) whose values coincide with the ones placed at the same
positions in D; see Eq. (3.4).

Finally, using Eq. (2.2) in Lemma 2.1 and Eqs. (3.13), (3.14) and (3.12),
we obtain

‖AN − I‖2F = n−
n∑
j=1

[tr (AUj)]
2

‖AUj‖2F
−
∑
j∈T

[tr (AVj)]
2

‖AVj‖2F

= n−
n∑
j=1

a2jj

‖Aej‖22
−
∑
j∈T

(
ajij − βjajj

)2∥∥Aeij∥∥22 − β2
j ‖Aej‖

2
2

= n−
n∑
j=1

a2jj

‖Aej‖22

−
n∑

j = 1
ij 6= j

[
ajij ‖Aej‖

2
2 − ajj

〈
Aej, Aeij

〉
2

]2
‖Aej‖22

(
‖Aej‖22

∥∥Aeij∥∥22 − 〈Aej, Aeij〉22) .

This proves the theorem in case 2. �

Remark 3.3. Formula (3.7) has the following geometric meaning. Since the
cosine of the angle between the ith column of matrix A and the jth column
of the identity is given by

cos∠ (Aei, ej) =
〈Aei, ej〉2
‖Aei‖2 ‖ej‖2

=
aji
‖Aei‖2
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then ∣∣ajij ∣∣∥∥Aeij∥∥2 = max
1≤i≤n

|aji|
‖Aei‖2

= max
1≤i≤n

|cos∠ (Aei, ej)| =
∣∣cos∠

(
Aeij , ej

)∣∣
and thus, Eq. (3.7) simply selects the column ij of matrix A that maximizes
|cos∠ (Aei, ej)|, i.e., it picks the column of A that is closest in angle to the
jth column ej of the identity (ajij > 0), or to −ej (ajij < 0).

Remark 3.4. Note that formulas (3.10) and (3.11) coincide with expressions
(3.4) and (3.5), respectively, for the optimal diagonal preconditioner. Of
course, this is due to the fact that, in case 1, we have

Sn = span {Mj,j}nj=1 = Dn,

and thus N = D.

Remark 3.5. The assumption that A is nonsingular in Theorem 3.1 is es-
sential. Indeed, note that the factor (appearing in the denominators of Eqs.
(3.8) and (3.9))

‖Aej‖22
∥∥Aeij∥∥22 − 〈Aej, Aeij〉22 > 0

because of the Cauchy-Schwartz inequality and the assumption that A is
nonsingular. In fact, the above positive factor is the Gram determinant of
the jth and the ijth columns of matrix A.

The following auxiliary lemma provides a lower bound on each summand
of the right-most sum in Eq. (3.9), which will be used to compare the pre-
conditioned matrix AN with both matrices AD (Corollary 3.1) and A itself
(Corollary 3.2).

Lemma 3.1. Let A ∈ Rn×n be nonsingular. For each j = 1, 2, . . . , n, let ij
be its corresponding index defined by Eq. (3.7), and let θj = ∠

(
Aej, Aeij

)
.

Then, for each j such that ij 6= j, we have[
ajij ‖Aej‖

2
2 − ajj

〈
Aej, Aeij

〉
2

]2
‖Aej‖22

(
‖Aej‖22

∥∥Aeij∥∥22 − 〈Aej, Aeij〉22) ≥
( ∣∣ajij ∣∣∥∥Aeij∥∥2 − |ajj|

‖Aej‖2

)2
1

sin2 θj
.

(3.15)
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Proof. For each j = 1, 2, . . . , n such that ij 6= j, we have[
ajij ‖Aej‖

2
2 − ajj

〈
Aej, Aeij

〉
2

]2
‖Aej‖22

(
‖Aej‖22

∥∥Aeij∥∥22 − 〈Aej, Aeij〉22)
=
a2jij ‖Aej‖

4
2 − 2ajjajij ‖Aej‖

2
2

〈
Aej, Aeij

〉
2

+ a2jj
〈
Aej, Aeij

〉2
2

‖Aej‖22
(
‖Aej‖22

∥∥Aeij∥∥22 − 〈Aej, Aeij〉22)
=
a2jij ‖Aej‖

2
2 − 2ajjajij

〈
Aej, Aeij

〉
2

+
a2jj

‖Aej‖22

〈
Aej, Aeij

〉2
2

‖Aej‖22
∥∥Aeij∥∥22 − 〈Aej, Aeij〉22

=

a2jij

‖Aeij‖
2

2

− 2
ajj
‖Aej‖2

ajij

‖Aeij‖2
cos θj +

a2jj

‖Aej‖22
cos2 θj

1− cos2 θj

≥

a2jij

‖Aeij‖
2

2

− 2
|ajj |
‖Aej‖2

|ajij |
‖Aeij‖2

|cos θj|+
a2jj

‖Aej‖22
cos2 θj

sin2 θj

=

|ajij |
2

‖Aeij‖
2

2

− 2
|ajj |
‖Aej‖2

|ajij |
‖Aeij‖2

|cos θj|+ |ajj |2

‖Aej‖22
cos2 θj

sin2 θj

=

(
|ajij |
‖Aeij‖2

− |ajj |
‖Aej‖2

|cos θj|
)2

sin2 θj
≥

(
|ajij |
‖Aeij‖2

− |ajj |
‖Aej‖2

)2

sin2 θj
,

since ∣∣ajij ∣∣∥∥Aeij∥∥2 − |ajj|
‖Aej‖2

|cos θj| ≥
∣∣ajij ∣∣∥∥Aeij∥∥2 − |ajj|

‖Aej‖2
> 0

because of Eq. (3.7). �
Next corollary, a key result in this paper, compares the minimum Frobe-

nius norms for the optimal diagonal preconditioner D and for the optimal
preconditioner N given by Theorem 3.1.

Corollary 3.1. Let A ∈ Rn×n be nonsingular. For each j = 1, 2, . . . , n, let
ij be its corresponding index defined by Eq. (3.7), and let θj = ∠

(
Aej, Aeij

)
.

Let D be the optimal diagonal preconditioner for matrix A. Let N be the

14



solution to problem (1.4) for the subspace Sn defined by Eq. (3.6). Then

∥∥AD − I∥∥2
F
−‖AN − I‖2F ≥

n∑
j = 1
ij 6= j

( ∣∣ajij ∣∣∥∥Aeij∥∥2 − |ajj|
‖Aej‖2

)2
1

sin2 θj
. (3.16)

Proof. Using Eqs. (3.5), (3.9) and (3.15) we see that N improves D by the
quantity∥∥AD − I∥∥2

F
− ‖AN − I‖2F =

n∑
j = 1
ij 6= j

[
ajij ‖Aej‖

2
2 − ajj

〈
Aej, Aeij

〉
2

]2
‖Aej‖22

(
‖Aej‖22

∥∥Aeij∥∥22 − 〈Aej, Aeij〉22)

≥
n∑

j = 1
ij 6= j

( ∣∣ajij ∣∣∥∥Aeij∥∥2 − |ajj|
‖Aej‖2

)2
1

sin2 θj
. �

Next corollary compares the Frobenius norms of the residual matrices A− I
and AN − I.

Corollary 3.2. Let A ∈ Rn×n be nonsingular. For each j = 1, 2, . . . , n, let
ij be its corresponding index defined by Eq. (3.7), and let θj = ∠

(
Aej, Aeij

)
.

Then, the solution N to problem (1.4) for the subspace Sn defined by Eq.
(3.6) satisfies

‖A− I‖2F − ‖AN − I‖
2
F ≥

n∑
j=1

(
‖Aej‖22 − ajj

)2
‖Aej‖22

+
n∑

j = 1
ij 6= j

( ∣∣ajij ∣∣∥∥Aeij∥∥2 − |ajj|
‖Aej‖2

)2
1

sin2 θj
. (3.17)

In particular, if ‖Aej‖22 6= ajj for at least one index j = 1, 2, . . . , n or if
matrix N is not diagonal then we have

‖A− I‖F > ‖AN − I‖F . (3.18)
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Proof. Using the obvious fact that

‖A− I‖2F = n−
(
2tr (A)− ‖A‖2F

)
and Eqs. (3.9) and (3.15), we obtain

‖A− I‖2F − ‖AN − I‖
2
F = ‖A‖2F − 2tr (A) +

n∑
j=1

a2jj

‖Aej‖22

+
n∑

j = 1
ij 6= j

[
ajij ‖Aej‖

2
2 − ajj

〈
Aej, Aeij

〉
2

]2
‖Aej‖22

(
‖Aej‖22

∥∥Aeij∥∥22 − 〈Aej, Aeij〉22)

≥
n∑
j=1

‖Aej‖22 −
n∑
j=1

2ajj +
n∑
j=1

a2jj

‖Aej‖22

+
n∑

j = 1
ij 6= j

( ∣∣ajij ∣∣∥∥Aeij∥∥2 − |ajj|
‖Aej‖2

)2
1

sin2 θj

=
n∑
j=1

(
‖Aej‖22 − ajj

)2
‖Aej‖22

+
n∑

j = 1
ij 6= j

( ∣∣ajij ∣∣∥∥Aeij∥∥2 − |ajj|
‖Aej‖2

)2
1

sin2 θj
.

Finally, if ‖Aej‖22 6= ajj for at least one index j = 1, 2, . . . , n then the left
sum in Eq. (3.17) contains at least one positive summand, and thus we
conclude that ‖A− I‖F > ‖AN − I‖F . Moreover, if matrix N is not di-
agonal then ij 6= j for at least one column j ∈ {1, 2, . . . , n} (case 2 in the
proof of Theorem 3.1). Hence, the right sum in Eq. (3.17) contains at
least one summand, which is necessarily positive due to Eq. (3.7), and thus
‖A− I‖F > ‖AN − I‖F . �

Remark 3.6. Corollary 3.1 has established the comparison between the op-
timal diagonal preconditioner D and the proposed preconditioner N , in the
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following terms. First, note that from Eqs. (3.7) and (3.16), we conclude
that N improves D in the sense of Definition 3.1, i.e.,

If N 6= D ⇒ ∃ j ∈ {1, 2, . . . , n} s.t. ij 6= j ⇒
∥∥AD − I∥∥

F
> ‖AN − I‖F .

Second, Eq. (3.16) provides us with the following analysis of the improvement
achieved when using preconditioner N instead of preconditioner D. For the
second item, we use the obvious fact that the function f (θ) = 1

sin2 θ
is strictly

decreasing in the interval
(
0, π

2

)
, and strictly increasing in the interval

(
π
2
, π
)
.

(i) For each j = 1, 2, . . . , n such that ij 6= j, the more the maximum quotient
|ajij |
‖Aeij‖2

(given by Eq. (3.7)) exceeds the quotient
|ajj |
‖Aej‖2

, the larger the differ-

ence
∥∥AD − I∥∥2

F
−‖AN − I‖2F will be, and thus the more the preconditioner

N improves the diagonal preconditioner D (in the sense of Definition 3.1).
(ii) For each j = 1, 2, . . . , n such that ij 6= j, the closer the angle θj between
the jth and the ijth columns of the coefficient matrix A is either to 0 or to
π (i.e., the larger the difference between θj and π

2
is), the larger f (θj), and

then the larger the difference
∥∥AD − I∥∥2

F
−‖AN − I‖2F will be, and thus the

more the preconditioner N improves the diagonal preconditioner D (in the
sense of Definition 3.1).

Remark 3.7. Note that the right-most sum in Eq. (3.17) coincides with the
sum in Eq. (3.16). Thus, the above two comments (i) and (ii) in Remark 3.6,
concerning the comparison between

∥∥AD − I∥∥
F

and ‖AN − I‖F (analyzed
in Corollary 3.1), remain true for the comparison between ‖A− I‖F and
‖AN − I‖F (analyzed in Corollary 3.2).

Remark 3.8. Call N1 = N the approximate inverse of matrix A, con-
structed in Theorem 3.1. According to the well-known multistep precon-
ditioning strategy (see, e.g., [15, 26]), we can obtain a sequence N1, N1N2,
N1N2N3, . . . of approximate inverses of A where, for every k ≥ 2, matrix Nk

is the best sparse approximate inverse of matrix AN1N2 · · ·Nk−1, among all
matrices defined by the sparsity pattern (3.6).

Note that since subspace Dn of all n × n diagonal matrices is closed for
the matrix product, then we have

min
M∈Dn

‖(AN1)M − I‖F = ‖(AN1)N2 − I‖F = ‖A (N1N2)− I‖F
min
M∈Dn

‖A (N1M)− I‖F = min
M∈Dn

‖AM − I‖F = ‖AN1 − I‖F ,

17



and then, due to the uniqueness of solution of problem (1.4), we conclude
that N1N2 = N1. This means that the multistep strategy does not make
sense for the optimal diagonal preconditioner. However, this does not happen
with the optimal preconditioners N belonging to the subspaces Sn defined
by the prescribed sparsity patterns (3.6) and thus, in our case the multistep
preconditioning strategy makes sense. In particular, Eq. (3.18) implies that
each step k of our multistep preconditioning strategy strictly reduces the
Frobenius norm, whenever the preconditioner Nk−1, obtained in the previous
step, is not diagonal.

4. Numerical experiments

We present some numerical experiments to illustrate the behavior of the
proposed preconditioner N . We compare the preconditioned linear system
using our preconditioner N with both the unpreconditioned linear system
and the preconditioned system using the optimal diagonal preconditioner D.
At the end of this section, the preconditioner N is also compared with the ap-
proximate inverse preconditioner AINV. We have studied a number of linear
systems Ax = b, where the test coefficient matrices are taken from the Uni-
versity of Florida Sparse Matrix Collection [28]. We carried out our numeri-
cal problems with the Krylov solvers GMRES [29] and BiCGStab [30]. Both
solvers led to similar results for most test matrices, but a small advantage was
observed when using the latter for solving the systems preconditioned with
matrix N . For this reason, we only present here the results obtained with
the (right-preconditioned) BiCGStab. In any case, our purpose in this paper
is to analyze the effectiveness of the proposed preconditioner (especially in
comparison with the optimal diagonal approximate inverse), rather than to
compare different Krylov subspace methods. The initial guess was always
x0 = 0, and the right-hand side vector was b = [1, . . . , 1]T . The stopping
criterion was either

‖b− Axk‖2
‖b‖2

< 10−8,

or when this condition about the relative residual was not satisfied, within
2n iterations (n being the order of the coefficient matrix A). We run all
numerical experiments in double precision arithmetic, on Intel(R) Xeon(R)
E5620 with 2.40 GHz clock frequency and 24GB of main memory using GNU
Octave 3.2.4.
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In Table 1, n and nnz (A) stand for the order and the number of nonzero
entries of matrix A, respectively. This table also provides the Frobenius
norms of matrices A− I, AD − I and AN − I.

In Table 2, nnz (N) denotes the number of nonzero entries of our precon-
ditioner N , which is compared, in its second column, with the number n of
entries of the optimal diagonal preconditioner D (obviously, n ≤ nnz (N) ≤
2n). In the third and fourth columns, D-time and N -time denote the CPU
time (in seconds) for constructing the preconditioners D and N , respectively.
In the three right-most columns, Unprec-iter, D-iter, and N -iter stand for
the number of iterations of the BiCGStab method for the unpreconditioned
system, and the preconditioned systems with D and N , respectively. When
convergence is not attained, within the maximum number 2n of allowed it-
erations, we indicate it by writing “†”, in any of the corresponding columns
Unprec-iter, D-iter and N -iter.

Numerical tests reported confirm the theoretical results and illustrate the
effectiveness of the proposed preconditioner in comparison with the optimal
diagonal one.

Test problems have been grouped together into five classes, according to
the behavior of the preconditioner N in comparison with D. Looking at
the two right-most columns (D-iter and N -iter) in Table 2, one can easily
identify each of these five groups of test matrices. For each of these classes,
problems are arranged in increasing order of the size n of the test coefficient
matrices.

The first five test problems correspond to matrices for which the optimal
diagonal preconditioner and our preconditioner coincide, i.e., N = D. Of
course, this is in accordance with the theory, since N has been defined as a
generalization of D, and they do coincide when ij = j for all j = 1, 2, . . . , n.
Obviously, in such cases, Table 2 shows that nnz (N) = n (each column of
N consists only of its diagonal entry), and the number of iterations needed
for convergence coincide for both preconditioners.

The rest of test matrices corresponds to the case N 6= D, so that the
number nnz (N) of nonzero entries of N will be greater than n. When
nnz (N) = 2n, this means that ij 6= j for all j = 1, 2, . . . , n, and each
column of N consists of two nonzero entries.
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Table 1

The test matrices and the Frobenius norms of A− I, AD − I and AN − I.

Matrix n nnz (A) ‖A− I‖F
∥∥AD − I

∥∥
F
‖AN − I‖F

orsirr 2 886 5970 1.55× 106 18 18
sherman1 1000 3750 1.00× 103 15.6 15.6
sherman4 1104 3786 1.21× 103 10.4 10.4
bcsstk09 1083 18437 8.57× 108 21.2 21.2
sherman3 5005 20033 1.36× 107 27.2 27.2

hor 131 434 4182 4.34× 102 14.7 14.7
rdb450l 450 2580 5.01× 102 16.2 13.7
pores 3 532 3474 6.63× 105 15.1 14.9
steam2 600 5660 5.27× 1010 16.8 12.3
young3c 841 3988 6.40× 103 14.8 14.7
bcsstk10 1086 22070 2.97× 108 22.6 22.6

olm500 500 1996 2.24× 105 18.3 15.6
olm1000 1000 3996 1.26× 106 25.8 22.1
tols1090 1090 3546 1.23× 107 16.8 14.6

fpga trans 01 1220 7382 1.22× 103 24.6 22.4
adder dcop 14 1813 11246 1.81× 103 24.3 23.9
adder dcop 15 1813 11246 1.81× 103 24.4 24
adder dcop 16 1813 11246 1.81× 103 24.1 23.7
adder dcop 17 1813 11246 1.81× 103 24 23.6
adder dcop 20 1813 11246 1.81× 103 24 23.5
adder trans 02 1814 14579 1.81× 103 14.6 14.1

tols2000 2000 5184 5.40× 107 21.6 18.7
psmigr 1 3140 543160 3.54× 106 15.4 15.4
tols4000 4000 8784 2.98× 108 29.5 25.5

meg4 5860 25258 9.87× 105 17.4 15.8

steam1 240 2248 8.41× 107 8.95 8.92
sherman5 3312 20793 1.44× 104 32.4 32.3

sherman2 1080 23094 7.00× 109 30.7 28.9
adder dcop 10 1813 11232 1.81× 103 25.2 24.7
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Table 2

Convergence results for D and N .

Matrix nnz (N) /n D-time N -time Unprec-iter D-iter N -iter

orsirr 2 886/886 0.072 0.360 1232 448 448
sherman1 1000/1000 0.084 0.368 407 192 192
sherman4 1104/1104 0.096 0.408 92 64 64
bcsstk09 1083/1083 0.124 0.832 188 154 154
sherman3 5005/5005 1.56 6 † 453 453

hor 131 435/434 0.028 0.140 † 369 255
rdb450l 900/450 0.024 0.380 † 254 51
pores 3 560/532 0.032 0.188 † 717 637
steam2 750/600 0.044 0.324 448 10 7
young3c 849/841 0.072 0.304 1080 974 804
bcsstk10 1088/1086 0.136 0.936 † 736 657

olm500 1000/500 0.032 0.428 † † 307
olm1000 2000/1000 0.084 0.996 † † 657
tols1090 1568/1090 0.088 0.688 † † 1560

fpga trans 01 1352/1220 0.128 0.684 † † 205
adder dcop 14 1834/1813 0.248 1.224 † † 437
adder dcop 15 1836/1813 0.248 1.220 † † 310
adder dcop 16 1837/1813 0.248 1.224 † † 418
adder dcop 17 1843/1813 0.248 1.228 † † 329
adder dcop 20 1857/1813 0.248 1.248 † † 518
adder trans 02 1832/1814 0.260 1.384 229 † 9

tols2000 2842/2000 0.256 1.560 † † 1534
psmigr 1 3143/3140 4.348 46.951 1812 † 58
tols4000 5642/4000 0.896 4.492 † † 1328

meg4 5968/5860 2.104 8.584 † † 5

steam1 320/240 0.012 0.108 † 236 388
sherman5 3327/3312 0.756 3.53 2251 849 892

sherman2 1628/1080 0.144 1.38 † † †
adder dcop 10 1872/1813 0.248 1.256 † † †

In some of these cases (e.g., for the test matrices displayed in rows 6-11),
the number of iterations needed to reach convergence is reduced when using
our preconditioner N instead of D.

Moreover, in many cases, like for instance for the test matrices displayed
in rows 12-25 in Table 2, convergence is not attained with the diagonal pre-
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conditioner D, but however it is reached when we use our preconditioner N .
We think that this is the main advantage of our preconditioner pointed out
by the numerical tests.

In particular, we highlight the case of the test matrix psmigr 1. In this
case, although the preconditioner N has only 3 nonzero entries more than the
diagonal preconditioner D (nnz (N) /n = 3143/3140), the system transits
from non-convergence to convergence if we use N (with a small number
of iterations) instead of D as preconditioning matrix. Moreover, for this
test problem, both preconditioners only differ in the numerical values of 6
entries: the nnz (N) − n = 3 diagonal entries (j, j) for which ij 6= j, and
the corresponding 3 nondiagonal entries (ij, j) that do not appear in the
diagonal matrix D. The numerical values of the remaining n − 3 = 3137
nonzero diagonal entries of D and N coincide (see Eqs. (3.4) and (3.8)). So,
D and N are very similar but, as mentioned, we obtain convergence with the
latter, but not with the former. This happens not only for the test problem
psmigr 1, but also for other test matrices reported.

Next, we present two problems, namely the third and fourth ones from the
bottom, for which the number of iterations required for reaching convergence
is greater when we use the preconditioner N instead of D. Finally, for the last
two test matrices reported, convergence is reached neither with N nor with
D. This can be explained by the small number of nonzero entries in both
preconditioners, which makes them inefficient for some very ill-conditioned
systems.

For all test problems reported, the last three columns in Table 1 confirm
our theoretical results, in the sense that

‖A− I‖F ≥
∥∥AD − I∥∥

F
≥ ‖AN − I‖F .

On one hand, the first inequality is due to the fact that the optimal
diagonal preconditioner D (by definition) minimizes ‖AM − I‖F over the
subspace of all n×n diagonal matrices (and the identity is a diagonal matrix).
On the other hand, the second inequality is an obvious consequence of the
set inclusion Sn ⊇ Dn (as commented in Remark 3.2).

The large difference (observed for all test matrices reported) between
‖A− I‖F and any of the values

∥∥AD − I∥∥
F

and ‖AN − I‖F is mainly due to
the following fact. While, obviously, ‖A− I‖F can be arbitrarily large, both
norms

∥∥AD − I∥∥
F

and ‖AN − I‖F are never greater than
√
n. The reason

is that, from Eq. (2.2) we immediately derive that the optimal approximate
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inverse M (in the Frobenius sense) over any matrix subspace S ⊂ Rn×n

(and, in particular, M = D and M = N) always satisfies ‖AM − I‖F ≤
√
n.

Also, we can observe that the test matrices for which the difference between∥∥AD − I∥∥
F

and ‖AN − I‖F is larger usually correspond to those cases for

which the ratio between the numbers of nonzero entries in matrices N and D
(denoted by nnz (N) /n in Table 2) is larger. In addition to this ratio, other
parameters that also determine the difference between (the squares of) the
Frobenius norms of AD− I and AN − I have been analyzed in Remark 3.6.

Summing up, in almost all the cases, the iterations required by the
BiCGStab method when using preconditioner N are fewer than those needed
by this solver when using the diagonal preconditioner D. The differences be-
tween the CPU times for constructing the preconditioners D and N , as well
as the differences between the execution times of the BiCGStab method for
both preconditioners, are not significant, and in most cases the total CPU
times for solving the system with D and N are of the same order of mag-
nitude. In any case, the small increment in computational cost when using
the preconditioner N instead of D, is compensated by the fact that, in many
cases, convergence is reached with the preconditioner N but not with the
optimal diagonal preconditioner D.

For both preconditioners D and N , their respective sparsity patterns con-
sist of small numbers of nonzero entries (n entries for D, and a number of
entries between n and 2n for N). On one hand, this implies low computa-
tional costs for constructing them. On the other hand, for both of them,
the number of required iterations is large in comparison with other more
dense and expensive optimal approximate inverse preconditioners based on
the same idea (Frobenius norm minimization). In any case, as the numerical
experiments have shown, the proposed preconditioner improves the classical
diagonal one, with a small increment in the computation cost required for
constructing the former instead of the latter.

To finish this section, we compare the proposed preconditioner N with a
more expensive approximate inverse preconditioner, namely the well-known
AINV preconditioner [6]. We have implemented the AINV preconditioner,
with a drop tolerance Tol = 0.25, for the same set of test matrices used for
comparing our preconditioner N with the optimal diagonal one D. For most
of these test problems, AINV was found to be more efficient (in terms of
the overall solution time and using the Krylov solver BiCGStab) than N .
However, for some test matrices, namely sherman4, steam2, adder trans 02,
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psmigr 1 and meg4, the proposed preconditioner was found to be more effi-
cient than AINV. In conclusion, our proposed preconditioner was more effec-
tive than the optimal diagonal D for most of the numerical problems consid-
ered in this paper, and it was more effective than the AINV preconditioner
in a few cases.

5. Summary and conclusions

In this paper, a new approximate inverse preconditioner N for large sparse
linear systems has been constructed and theoretically analyzed. N has been
defined as the optimal preconditioner (in the Frobenius sense) among all the
n×n matrices whose only nonzero entries, for each column j = 1, 2, . . . , n, are
the diagonal one (j, j) and, in addition, the optimal entry (ij, j) in column
j, whenever it does not coincide with the diagonal one. In this way, our
preconditioning matrix N generalizes the optimal diagonal preconditioner D.
Explicit expressions for both matrix N and the minimum Frobenius norm
‖AN − I‖F have been presented. We have proved that, whenever N 6= D,
the preconditioner N (which has at least n and at most 2n nonzero entries)
improves D, in the sense of the Frobenius norm. We have also analyzed the
difference between the Frobenius norms of A− I and AN − I.

Numerical experiments have confirmed the theoretical results, presenting
a number of test matrices for which the proposed preconditioner improves
the convergence of the optimal diagonal one, when they do not coincide.
In particular, Table 1 shows that the Frobenius norm ‖AN − I‖F is always
smaller (as we have theoretically shown) and, in fact, much smaller in most
cases than the Frobenius norm ‖A− I‖F . Table 2 illustrates the reduction,
in most cases, of the number of iterations when we use the preconditioning
matrix N instead of D.

The main advantage of our preconditioner pointed out by the numerical
tests is the following. For many test matrices, the small additional CPU
time required for constructing N instead of D is compensated by the fact
that system transits from non-convergence to convergence when using N
instead of D as preconditioning matrix. Moreover, this also occurs for some
test problems for which the number of nonzero entries of the preconditioner
N exceeds only by a very small quantity the number of nonzero entries of the
diagonal preconditioner D, and the numerical values of most of the entries
placed at the same diagonal positions coincide for both preconditioners (D
and N are very similar).
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For future researches, it would be interesting to analyze in more detail
the practical value of the preconditioner proposed in this paper. For this
purpose, our preconditioner N could be compared, using new test matrices,
with the AINV approximate inverse preconditioner and with other precondi-
tioners not considered in this paper. In addition, it is worth trying to study
some common characteristics/features of those test matrices for which the
generalized preconditioner N has a better behavior for convergence purposes.

Finally, regarding an additional line for future work, our method can be
improved by considering the optimal preconditioner N (in the sense of the
Frobenius norm) among all the n×n matrices having exactly a (small) fixed
number mj ≥ 2 of nonzero entries for each column j = 1, 2, . . . , n.

The determination of the sparsity pattern of such preconditioner N is not
a simple problem because of the following fact. Assume that the jth column
Nej of the preconditioner N consists of only one nonzero entry, i.e., mj = 1.
Then, as shown in Section 3, the optimal position

(
i1j , j

)
in the jth column

Nej of N for minimizing ‖ANej − ej‖2 can be easily determined simply by
using Eq. (3.7). Similarly, we can easily determine the second, third,...,mjth
best positions

(
i2j , j

)
,
(
i3j , j

)
,...,
(
i
mj

j , j
)

in the jth column of N for minimizing
‖ANej − ej‖2. Unfortunately, the set of these best mj positions (obtained
separately, i.e., when Nej consists of only one nonzero entry) for approxi-
mating the jth column ej of I, does not necessarily coincide with the optimal
set of cardinality mj for approximating ej (when the sparsity pattern of N
is defined by the condition that Nej consists of mj ≥ 2 nonzero entries).
Consequently, the determination of this optimal mj-set (in order to find the
optimal sparsity pattern for an optimal preconditioner defined by Eq. (1.4))
is a very difficult problem (when mj ≥ 2). Alternatively, one can consider the
possibility of using an algorithm based on the LU factorization with partial
pivoting to determine the optimal sparsity pattern for each column.
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